399 research outputs found

    Multi-modality imaging approach in a challenging case of surgically corrected partial anomalous pulmonary venous return and atrial tachycardia treated with radiofrequency ablation

    Get PDF
    Pulmonary anomalous venous return (PAPVR) is defined as a congenital anomaly in which at least one but not all of the pulmonary veins abnormally drain into a systemic vein or directly into the right atrium. Signs and symptoms related to this condition are due to the hemodynamic abnormalities secondary to left-to-right shunt and the possible presence of other associated cardiac anomalies (e.g., sinus venous atrial septal defect). Therefore, depending on the extent of the shunt, the clinical presentation of PAPVR is variable, ranging from asymptomatic patients to patients affected by severe heart failure with right-sided volume overload. PAPVR with a clinically significant shunt should be referred for surgical correction with different techniques depending on the presence of associated cardiac anomalies. We are presenting a case of partial anomalous venous return (PAPVR) in a 66-year-old man who underwent surgery 26 years ago to correct an anomalous venous connection between the right superior pulmonary vein (RSPV) and the superior vena cava (SVC) through a veno-atrial baffle. The patient was admitted to the emergency department due to atrial tachycardia. Trans-thoracic echocardiography (TTE) showed a dilated right ventricle (RV) with mild RV systolic dysfunction and pulmonary hypertension.Cardiac magnetic resonance (CMR) further confirmed the findings described by TTE and also demonstrated areas of fibrosis replacement in the hinge points. Cardiac computed tomography (CCT) was able to accurately depict and evaluate the surgically created veno-atrial baffle and also showed an anomalous connection between the left superior pulmonary vein (LSPV) and the brachiocephalic vein (BCV) through a vertical vein. The patient was successfully treated with radiofrequency ablation for his arrhythmia

    a comparison of semg temporal and spatial information in the analysis of continuous movements

    Get PDF
    Abstract Much effort has recently been devoted to the analysis of continuous movements with the aim of promoting EMG signal acceptance in several fields of application. Moreover, several studies have been performed to optimize the temporal and spatial parameters in order to obtain a robust interpretation of EMG signals. Resulting from these perspectives, the investigation of the contribution of EMG temporal and spatial information has become a relevant aspect for signal interpretation. This paper aims to evaluate the effects of the two types of information on continuous motions analysis. In order to achieve this goal, the spatial and temporal information of EMG signals were separated and applied as input for an offline Template Making and Matching algorithm. Movement recognition was performed testing three different methods. In the first case (the Temporal approach) the RMS time series generated during movements was the only information employed. In the second case (the Spatial approach) the mean RMS amplitude measured on each channel was considered. Finally, in the third case (the Spatio-Temporal approach) a combination of the information from both the previous approaches was applied. The experimental protocol included 14 movements, which were different from each other in the muscular activation and the execution timing. Results show that the recognition of continuous movements cannot disregard the temporal information. Moreover, the temporal patterns seem to be relevant also for distinguishing movements which differ only in the muscular areas they activate

    Characterization of atmospheric aerosol optical properties based on the combined use of a ground-based Raman lidar and an airborne optical particle counter in the framework of the Hydrological Cycle in the Mediterranean Experiment – Special Observation Period 1

    Get PDF
    Abstract. Vertical profiles of the particle backscattering coefficient at 355, 532 and 1064 nm measured by the University of Basilicata Raman lidar system (BASIL) have been compared with simulated particle backscatter profiles obtained through a Mie scattering code based on the use of simultaneous and almost co-located profiles provided by an airborne optical particle counter. Measurements were carried out during dedicated flights of the French research aircraft ATR42 in the framework of the European Facility for Airborne Research (EUFAR) project "WaLiTemp", as part of the Hydrological Cycle in the Mediterranean Experiment – Special Observation Period 1 (HyMeX-SOP1). Results from two selected case studies are reported and discussed in the paper, and a dedicated analysis approach is illustrated and applied to the dataset. Results reveal a good agreement between measured and simulated multi-wavelength particle backscattering profiles. Specifically, simulated and measured particle backscattering profiles at 355 and 532 nm for the second case study are found to deviate less than 15 % (mean value =5.9 %) and 50 % (mean value =25.9 %), respectively, when considering the presence of a continental–urban aerosol component, while slightly larger deviation values are found for the first study. The reported good agreement between measured and simulated multi-wavelength particle backscatter profiles testifies to the ability of multi-wavelength Raman lidar systems to infer aerosol types at different altitudes

    Clear-air lidar dark band

    Get PDF
    This paper illustrates measurements carried out by the Raman lidar BASIL in the frame of HOPE, revealing the presence of a clear-air dark band phenomenon (i.e. the appearance of a minimum in lidar backscatter echoes) in the upper portion of the convective boundary layer. The phenomenon is clearly distinguishable in the lidar backscatter echoes at 1064 nm. This phenomenon is attributed to the presence of lignite aerosol particles advected from the surrounding open pit mines in the vicinity of the measuring site

    Correlation between Primary Myelofibrosis and the Association of Portal Thrombosis with Portal-Biliary Cavernoma: US, MDCT, and MRI Features

    Get PDF
    Abstract Objective Myelofibrosis is a rare chronic myelolymphoproliferative disease and is associated with increased risk of venous thromboembolism. The objective of this study is to retrospectively evaluate patients with primary myelofibrosis who underwent abdominal US, MDCT and MRI, in order to identify the development of portal thrombosis and its correlation with portal-biliary cavernoma. Methods We evaluated 125 patients with initial diagnosis of primary myelofibrosis and nonspecific abdominal pain who had undergone US with color Doppler. In 13 patients (8 men, 5 females; age: 45–85), US detected portal thrombosis with associated portal-biliary cavernoma. All patients subsequently underwent contrast-enhanced MDCT and MRI and 4 patients MR-cholangiography. The correlation between primary myelofibrosis and portal thrombosis and cavernoma respectively was calculated using χ2 test. Results About 10% of patients with primary myelofibrosis preliminary evaluated with US had partial (8 pts) or complete (5 pts) portal thrombosis associated with portal-biliary cavernoma with a χ2 = 0. In all patients, US detected a concentric thickening of main bile duct (MBD) wall (mean value: 7 mm); color Doppler always showed dilated venous vessels within the thickened wall of the biliary tract. Contrast-enhanced CT and MRI confirmed thickening of MBD walls with their progressive enhancement and allowed better assessment of the extent of the portal system thrombosis. MR-cholangiography showed a thin appearance of the MBD lumen with evidence of ab extrinsic compression. Conclusions The evidence of portal thrombosis and portal-biliary cavernoma in 10% of the patients with primary myelofibrosis indicates a close correlation between the two diseases. In the detection of portal thrombosis and portal-biliary cavernoma, US with color Doppler is the most reliable and economical diagnostic technique while contrast-enhanced MDCT and MRI allow better assessment of the extent of the portal vein thrombosis and of the complications of myelofibrosis

    Clear-air lidar dark band

    Get PDF
    Abstract. This paper illustrates measurements carried out by the Raman lidar BASIL in the frame of the HD(CP)2 Observational Prototype Experiment (HOPE), revealing the presence of a clear-air dark band phenomenon (i.e. a minimum in lidar backscatter echoes) in the upper portion of the convective boundary layer. The phenomenon is clearly distinguishable in the lidar backscatter echoes at 532 and 1064 nm, as well as in the particle depolarisation data. This phenomenon is attributed to the presence of lignite aerosol particles advected from the surrounding open pit mines in the vicinity of the measuring site. The paper provides evidence of the phenomenon and illustrates possible interpretations for its occurrence

    5GEx: realising a Europe-wide multi-domain framework for software-defined infrastructures

    Get PDF
    Market fragmentation has resulted in a multitude of network and cloud/data center operators, each focused on different countries, regions and technologies. This makes it difficult and costly to create infrastructure services spanning multiple domains, such as virtual connectivity or compute resources. In this article, we discuss the goals and work being done within the 5GEx (5G Exchange) project in realising a Europe-wide multi-domain platform. This platform aims at enabling cross-domain orchestration of services over multiple administrations or over multi-domain single administrations in the context of emerging 5G networking. The 5GEx vision is based on introducing a unification via network function virtualisation/software-defined networking compatible multi-domain orchestration for networks, clouds and services. We describe the motivation and 5GEx vision, the adopted architecture and the next steps in terms of implementation and experimentation.This work is performed in the framework of the H2020-ICT-2014 project 5GEx (Grant Agreement no. 671636), which is partially funded by the European Commission

    Characterisation of boundary layer turbulent processes by the Raman lidar BASIL in the frame of HD(CP) 2 Observational Prototype Experiment

    Get PDF
    Abstract. Measurements carried out by the University of Basilicata Raman lidar system (BASIL) are reported to demonstrate the capability of this instrument to characterise turbulent processes within the convective boundary layer (CBL). In order to resolve the vertical profiles of turbulent variables, high-resolution water vapour and temperature measurements, with a temporal resolution of 10 s and vertical resolutions of 90 and 30 m, respectively, are considered. Measurements of higher-order moments of the turbulent fluctuations of water vapour mixing ratio and temperature are obtained based on the application of autocovariance analyses to the water vapour mixing ratio and temperature time series. The algorithms are applied to a case study (11:30–13:30 UTC, 20 April 2013) from the High Definition Clouds and Precipitation for Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE), held in western Germany in the spring 2013. A new correction scheme for the removal of the elastic signal crosstalk into the low quantum number rotational Raman signal is applied. The noise errors are small enough to derive up to fourth-order moments for both water vapour mixing ratio and temperature fluctuations.To the best of our knowledge, BASIL is the first Raman lidar with a demonstrated capability to simultaneously retrieve daytime profiles of water vapour turbulent fluctuations up to the fourth order throughout the atmospheric CBL. This is combined with the capability of measuring daytime profiles of temperature fluctuations up to the fourth order. These measurements, in combination with measurements from other lidar and in situ systems, are important for verifying and possibly improving turbulence and convection parameterisation in weather and climate models at different scales down to the grey zone (grid increment  ∼  1 km; Wulfmeyer et al., 2016).For the considered case study, which represents a well-mixed and quasi-stationary CBL, the mean boundary layer height is found to be 1290 ± 75 m above ground level (a.g.l.). Values of the integral scale for water vapour and temperature fluctuations at the top of the CBL are in the range of 70–125 and 75–225 s, respectively; these values are much larger than the temporal resolution of the measurements (10 s), which testifies that the temporal resolution considered for the measurements is sufficiently high to resolve turbulent processes down to the inertial subrange and, consequently, to resolve the major part of the turbulent fluctuations. Peak values of all moments are found in the interfacial layer in the proximity of the top of the CBL. Specifically, water vapour and temperature second-order moments (variance) have maximum values of 0.29 g2 kg−2 and 0.26 K2; water vapour and temperature third-order moments have peak values of 0.156 g3 kg−3 and −0.067 K3, while water vapour and temperature fourth-order moments have maximum values of 0.28 g4 kg−4 and 0.24 K4. Water vapour and temperature kurtosis have values of  ∼  3 in the upper portion of the CBL, which indicate normally distributed humidity and temperature fluctuations. Reported values of the higher-order moments are in good agreement with previous measurements at different locations, thus providing confidence in the possibility of using these measurements for turbulence parameterisation in weather and climate models.In the determination of the temperature profiles, particular care was dedicated to minimise potential effects associated with elastic signal crosstalk on the rotational Raman signals. For this purpose, a specific algorithm was defined and tested to identify and remove the elastic signal crosstalk and to assess the residual systematic uncertainty affecting temperature measurements after correction. The application of this approach confirms that, for the present Raman lidar system, the crosstalk factor remains constant with time; consequently an appropriate assessment of its constant value allows for a complete removal of the leaking elastic signal from the rotational Raman lidar signals at any time (with a residual error on temperature measurements after correction not exceeding 0.18 K)

    A unifying orchestration operating platform for 5G

    Get PDF
    5G will revolutionize the way ICT and Telecommunications infrastructures work. Indeed, businesses can greatly benefit from innovation introduced by 5G and exploit the new deep integration between ICT and networking capabilities to generate new value-added services. Although a plethora of solutions for virtual resources and infrastructures management and orchestration already exists (e.g., OpenDaylight, ONOS, OpenStack, Apache Mesos, Open Source MANO, Docker Swarm, LXD/LXC, etc.), they are still not properly integrated to match the 5G requirements. In this paper, we present the 5G Operating Platform (5G-OP) which has been conceived to fill in this gap and integrate management, control and orchestration of computing, storage and networking resources down to the end-user devices and terminals (e.g., smart phone, machines, robots, drones, autonomous vehicles, etc.). The 5G-OP is an overarching framework capable to provide agnostic interfaces and a universal set of abstractions in order to implement seamless 5G infrastructure control and orchestration. The functional structure of the 5G-OP, including the horizontal and vertical interworking of functions in it, has been designed to allow Network Operators and Service Providers to exploit diverse roles and business strategies. Moreover, the functional decoupling of the 5G-OP from the underneath management, control and orchestration solutions allows pursuing faster innovation cycles, being ready for the emergence of new service models

    Evaluation of telomerase activity in nasal polyps

    Get PDF
    Background: The objective of this study was to assess if nasal polyps express telomerase activity and whether a difference could be found between the polyp and the surrounding mucosa of the middle meatus and between different portions of the polyp itself. Methods: Nine patients affected by nasal polyposis were included in this study; four of these patients had recurring polyposis. Telomerase activity was measured by telomeric repeat amplification protocol assay. In six patients, the telomeric repeat amplification protocol assay was performed on the polyp and on the mucosa from the ipsilateral middle meatus. In a polyp, we were able to investigate telomerase activity of its different portions, corresponding to pedicle and fundus. Results: Telomerase activity observed in nasal polyps was higher than that observed in samples from the ipsilateral middle meatus mucosa. High or intermediate telomerase activity was found to be related to predominant recurring polyposis. Conclusions: Therefore, it could be postulated that telomerase activity could be related with the tendency of polyps to recur
    • …
    corecore